同一性と差異に着目した反復表現

人はある対象を認識する際、記憶にある似ているものと比較 することでその特徴を相対的に認識しようとする。その際、比

較する対象には必ず同一性と差異の 2 つの側面がある。それら

け付けたス個今でありた私公和石に依在しあら間低でもある。 その特徴を捉えるには差異が必要である一方で、その比較は同

空間を比較し認識する際も同様であると考える。ある一つの 空間の特徴をその単体のみで把握することは難しいが、反復さ れた空間が存在することで、それらの比較によって大きさ、形、

間口などを相対的に認識することを可能に1.. 空間を構成する

あらゆる部位への観察、発見を促してくれるのではないかと考

える。本研究では、反復という形態操作を通して、空間におけ

る同一性と差異の関係を捉えなおし、比較可能な空間について

ドイツ出身の哲学者マルティン・ハイデガー【Martin Heidegger,1889-1976】は存在の本質を追究するために著書 の中で「同一性と差異」という概念を用いている。そこでは、 存在は差異の中から現れ、その背後には同一性があるとして

いる。困ち、全体性のたかで現れる個別的た存在は、差異によっ

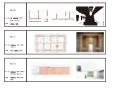
-性の存在によって成立する。

考えることを目的とする。

#1 100

て他のものと区別されるが、それら差異は同一性の存在によっ て成立している。 上記の報点が表現されているミニマル・アート作品がある。 1960 年代アメリカのミニマリズムアーティストの 1 人である ドナルド・ジャッド【Donald Judd,1928-1994】は、作品の中 で同じあるいは近しいものの反復操作をしている。図 2-1 の 作品は、並んでいる箱の中に枚数や位置や向きの異たる板が 入っている。しかし、それらの違いを認識できるのは、箱が 反復されたうえで、その大きさ、素材、間隔、高さが統一さ れているからであり、また同時に、その同一性は差異によっ

て強調されている。このように同一性と差異は表裏一体かっ 相互依存の関係にあることがわかる。


建築においても形態操作としての反復は様々な地域や様式、 思想において採用されてきた。図 2 にその変遷の概観をまと める。中世以前の西洋建築においては、技術的、材料的な制 約もあり、列柱空間など多くの建築部位で反復がなされた。 近代の工業化の時代においては建材の規格化が進み結果とし て均質な空間が生産された。近代以降はそこからの脱却を目 指すべく多様性や複雑性をはらんだ空間表現、思想が多く生 まれた。ヨーン・ウッツォンの Addictive Architecture、オラ ・ダ構造主義、メタボリズムはそれらの1つとして挙げられる。 また、多様性を目指した別の動きとして、70年代以降は古典的、 土着要素や図像、幾何学のコラージュによる建築表現が多く 作品でなされた。90 年代以降は、一建築内部での空間の大 きさやプロポーション変化を使った多様な表現が試みられた。 この変遷の文脈に削した本研究の試みは、空間の大きさや構 成に加えて、それらに関わらない間口や壁厚といった部位も 空間表現の一つと捉えて、比較を通した空間の特徴把握を促 すことにある。

前章で言及した通り、90 年代以降、空間の大きさやプロボ ョン変化による空間表現が見られるようになった。そこでオ では、90 年代以降の建築作品のうち、形態の反復により空間 同一性または差異を表現している事例 29 件を対象に、その 空間表現に関わっている部位および配列について分析する。(表

		Mark Street Street Street	

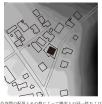
対象事例の図面および建築写真より、各事例の同一性(反復) よび差異の表現されている部位をそれぞれ取り出す。表中の F線はそれぞれ反復表現に直接関わっている同一性または差異)部位を示す。

部位は空間形態に直接影響するもの(平面寸法、天高など)(図 1)、隣室との関係に影響するもの(内部開口寸法、壁厚など) (図 4-2)、用途に関係するもの (機能、仕上げなど) (図 4-3) が確認された。

反復を反復たらしめているのは、ある単位が同一面上に複数 べられていることにある。このことから、今間では前筒で貼 出された部位とその差異表現が見られる図面との対応関係を 26。各図面の対応関係[同一性/差異]は、平面では[平面寸法 口位置/機能,関口幅,関口数]が多く見られ、断面では[幅, 天井形態 / 天高]、立面では[幅,開口形状 / 階高,開口寸法 ||口位置] が多く見られた。図 4-4 に、平面、断面、立面図上 明快な差異表現のある事例を示す。

この節では、作品の中で反復操作を多用している現代建築家 ループの反復の特徴についてそれぞれ記述することを通して、 正者の反復操作との相対化を試みる。

南米チリを代表する建築家ユニット [Pezo vor ichshausen, 2002-, Chile】。彼らの住宅作品の多くは反復され る矩形の民室の間を幅 1000mm ほどの細い空間が媒介する。4 の細い空間には水面や階段といった機能が収められると同時に E形の居室の拡張余地にもなる。これにより規則性をもつ差異 『平面的に表れる。また作品の敷地の多くは急峻地にあるため、 の地形に応答した断面的な差異表現も多く用いられる。


オ フ ィ ス KGDVS 【OFFICE Kersten Geers David Var veren,2002-,Belgium】の作品の多くは、反復された空間単位 Oみで平面的に空間が構成されている。室間の差異は空間形態 ではなく、機能や間口、仕上げによってつけられ、隣室との微 等が強く意識される。

SANAA [SANAA 1995- Janan] の作品は、シンプルカ専問 単位や構成をとりながらもその単調さを消すように反復操作が されている。大きさの異なる正方形開口を多数用いたり、平面 形態を同じにして隣高を変えたり平面的にずらしたりするなど、 経済合理性から要請される同一性を取り入れたうまで事項可能 な差異を空間表現に用いている。

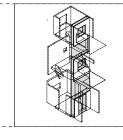
90 年代以降の建築作品お上び即代建築家グループの反復操作 いて同一性 / 差異の観点から概観した。取り上げたグルー いずれも平面や立面などある一面上に展開される反復表現 行っていた。次章では立体的な反復操作による同一性 / 差異 お現を提案する。

山梨県富士吉田市の斜面地の一角を敷地とした住宅を提案す 開口から見える景観を、明快な同一性 / 差異表現の一つ るために、住宅、森、富士山と、四方にそれぞれ異なる景観 と持つ敷地を選定した。また、プログラム上その建築の使用者 「全ての部屋を経験、比較できるものとするために建築用途と

単位空間の配列とその数によって隣室との同一性および差異 つけ方には違いが生じる。図 5-2 に配列方向と反復数による |室関係の違いをまとめる。1 方向配列では、室間の差異が ||体験上連続的に認識されるため、比較される同一性 / 差異表 ド明快になる。また、2 方向配列では、一つの室に対して必 F複数の隣室があるため、動線が複数通りになり、比較される 長現が多層的になる。今回の提案では、1 方向配列と 2 方向配 |の特徴を取り入れながら立体的に同一性 / 差異表現をつくれ 5 4×4×4 の配列を採用する。

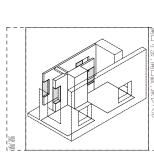
LANLLER!	· · · · · · · · · · · · · · · · · · ·	25.5990
NBR 2 (1×2)	注税にやすい 意質は程度によるずのず二項対立になる (文本、高格、明確) 意質の解除変は扱い	No.11 No.11
SIM 1 (1×1)	グラグーションが作れる 別用との関係の記載を可能になる や共工関係がある	No.4 No.7 No.19 No.24 No.26
SINK 4 (1×4)	反例的2 1 6200 6 シンメトリーを含める	No.24
2.为何に配門		
242	開催が必ず立つある 中央の受が無い 単位の制によるポシンメトリー	No.1
	1×11を認める 中央の変がある 間ではない変が発生 関連の数が増える	No.3 No.13
	1×2 1 6 2×2 2 6 1×4 2 6 請める 内閣は特殊がある	No.3 No.3
	開発を1つ以上みも 上記の配列のおよまでも2億利に組み 由むせることができる	AM

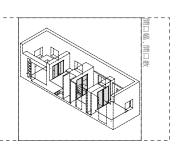
反復する空間単位は一辺 2100 mの立方体とする。前節で言 及したように、室の配列・反復を平面的・断面的に等価に行 ために単位空間の形態を立方体とした。また、寸法は単位空間 一民室として成立するよう各切 2100 mと設定した。(図 5-3)

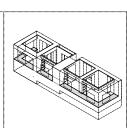


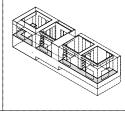
室間の距離や壁匠を同一件 / 差異表現として取入れるために 暖衝空間("図"の部分)を設ける。初期設定としてその幅を Omm とし住宅の諸機能や設え・階段を納める。そこに入る B能に合せて幅は仲縮する。(図 5-4)

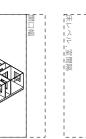
本提案において表現される[同一性/差異]は[平面寸法, 天高,外部開口寸法/機能,壁厚,開口位置,開口寸法,開口数, 仕上げ]である。また同時に、図 5-2 で示したような反復数 ごとの小まとまりにおいても各々個別の同一性 / 差異表現を

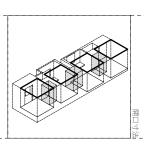

2章で言及したように、「同一性と差異」概念において、存 在は個々の存在間における比較、相互関係によって認識される。このことを今回の提案に当てはめて考えると、反復され る単位空間は立方体という最もニュートラルな形態をとりな がらも、個々の単位空間の特徴は空間そのものではなく、f の空間との関係によって規定される。即ち、隣室との距離、 壁厚、隣室と接続するための開口、床レベル差といった隣室 O相対的な差異によって規定される。

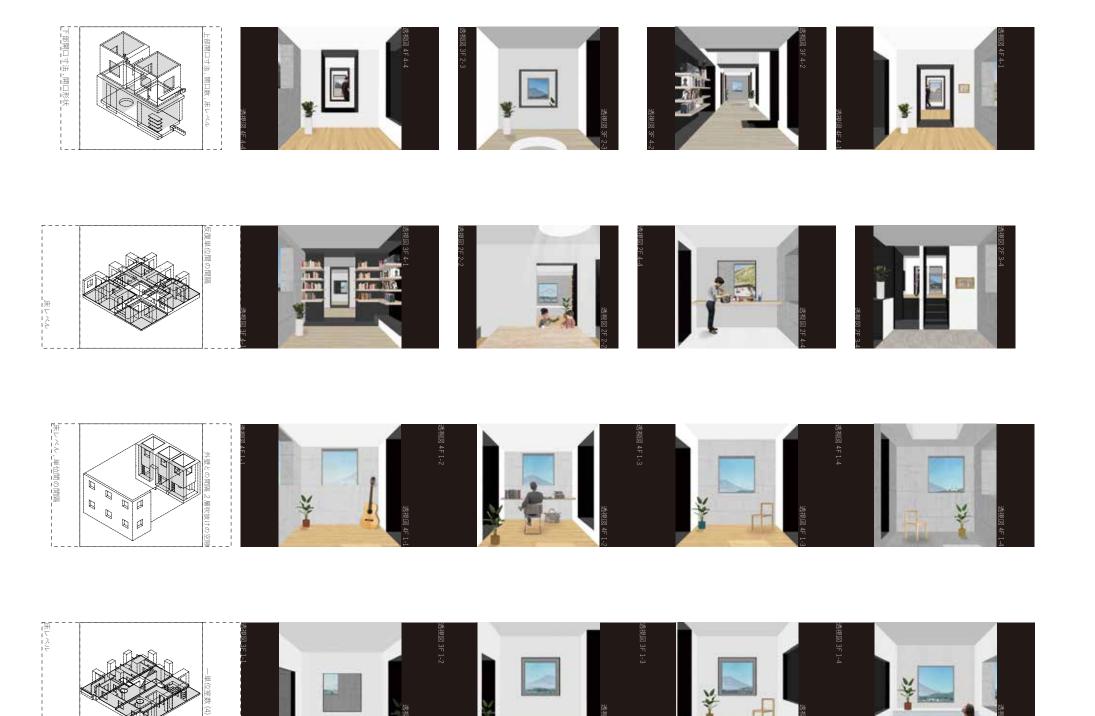


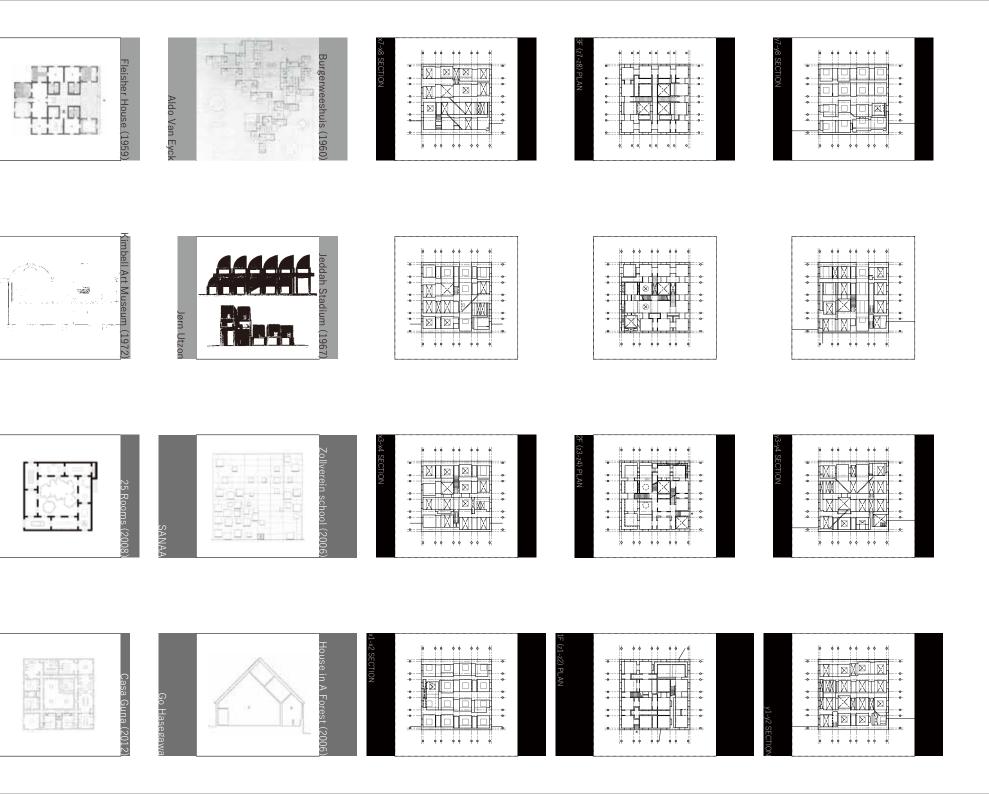

吹抜け部分の壁間

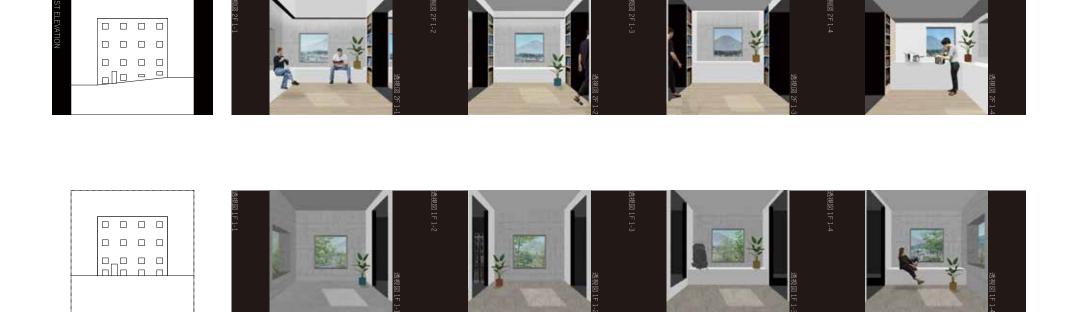

130


開口高さ,床レベ

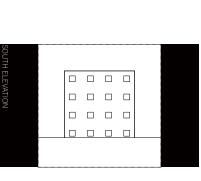








Louis Kahn


Louis Kahn

OFFICE KGDVS

Pezo von Ellrichshausen

